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Abstract. In this paper we present two new numerical methods for studying thermodynamic quantities
of integrable models. As an example of the effectiveness of these two approaches, results from numerical
solutions of all sets of Bethe ansatz equations, for small Heisenberg chains, and Monte Carlo simulations in
quasi-momentum space, for a relatively larger chains, are presented. Our results agree with those obtained
by the thermodynamic Bethe ansatz (TBA). As an application of these ideas, the pairwise entanglement
between two nearest neighbors at finite temperatures is studied.

PACS. 75.10.Jm Quantized spin models – 75.40.-s Critical-point effects, specific heats, short-range order

1 Introduction

The study of exactly solvable models is a very impor-
tant field in condensed matter physics, which began with
Bethe’s solution of the isotropic Heisenberg chain [1]. In
general, the Bethe ansatz (BA) solution of a model has
several drawbacks: it has a complex mathematical struc-
ture; the excitations are not immediately available; and
most important, it does not give explicit results even for
the thermodynamic quantities of the system. It was only
when Yang and Yang [2] presented a strategy to study the
thermodynamics of BA solvable systems that the tempera-
ture dependence of quantities such as the specific heat and
the magnetic susceptibility became available. The method
is now designated as the thermodynamic Bethe ansatz
and has undergone many developments in the last thirty
years [3]. Additionally, correlation functions, such as the
conductivity, can not be obtained from the BA equations
alone, and a combination of BA results with other meth-
ods is required for their calculation [4].

The BA method has been applied to Bose,
Fermi [5,6,8], and spin systems [1,7]. It is a general feature
of the BA solution, first proved by Yang and Yang [2] for
the Bose case, that a given eigenstate of the model is char-
acterized by a unique set of quantum numbers {Ij}. Fur-
ther, it also can be shown that all configurations of these
quantum numbers Ij exhaust the Hilbert space of a given
model. Since the energy eigenvalues are functions of the
above quantum numbers, instead of using TBA and quan-
tum Monte Carlo approaches, we can study BA solvable
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models in quantum number space by classical Monte Carlo
method. Furthermore, for a small system (these systems
are larger than those to which exact diagonalization meth-
ods can be applied), it is possible to solve the BA equa-
tions for all eigenvalues. Therefore, the expectation value
of an Hermitian operator in thermal equilibrium can be
computed.

In this paper, we shall introduce two numerical ap-
proaches for computing thermodynamic quantities of
Bethe ansatz solvable models. The methods are illustrated
with the 1D isotropic Heisenberg model, since this model
is well studied in the literature. Furthermore, the study of
the Heisenberg model is itself relevant, since this system
predicts many properties of quasi-one-dimensional mate-
rials [10–12]. This model has been investigated by many
kinds of methods. For example, the low temperature be-
haviors are quite well understood by a combination of the
Bethe ansatz [13] and conformal field theory [14,15]. A
strong logarithm singularity in the susceptibility at low
temperature was first found by the Bethe ansatz calcula-
tion of the quantum transfer matrix (QTM) [16] and then
verified experimentally [10,11]. The thermodynamics of
the model has been studied by TBA [3,17–22] as well as by
QTM [23–26]. As an application of our method, we apply
it to the pairwise entanglement of two nearest neighbors
of this model at finite temperatures. The entanglement
in spin systems has attracted much attention [27–29] due
to its nontrivial role in the field of quantum information
and quantum computation [30,31], moreover, it also sheds
new light on our understanding of the quantum critical
phenomenon [32,33].
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The paper is organized as follows. In Section 2, we first
briefly review the BA solution of the isotropic Heisenberg
model. In Sections 3 and 4, we introduce the basic idea
of the numerical Bethe ansatz (NBA) and Monte Carlo
Bethe ansatz (MCBA). In Section 5, we check the effec-
tiveness of these two methods by computing the specific
heat and the magnetic susceptibility in the absence of
an external magnetic field and compare our results with
those obtained from the TBA. We then use our methods
to study the two quantities above in the presence of an ex-
ternal magnetic field. In Section 6, we apply our method
to study the behavior of the pairwise entanglement in the
antiferromagnetic Heisenberg model. Finally, a brief sum-
mary is given in Section 7.

2 Isotropic Heisenberg model

Now let us first review the Bethe ansatz solution of the
1D Heisenberg chain, which can be found in Takahashi’s
book [3]. The Hamiltonian of the isotropic Heisenberg
model is

H = −J

N∑

l=1

(
Sx

l Sx
l+1 + Sy

l Sy
l+1 + Sz

l Sz
l+1

)
, (1)

where N is the number of sites, Sx
l , Sy

l , Sz
l are spin 1/2

operators at site l and J = −1, 1 representing anti-
ferromagnetic and ferromagnetic cases, respectively. The
solution with a periodic boundary condition �SN+1 = �S1

using the string hypothesis takes the form

Nθ(xn
γ/n) = 2πI(n)

γ +
∑

m,β �=n,γ

Θnm(xn
γ − xm

β ). (2)
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)
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(
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for : n = m (3)

and xn
γ is the real part of the n-string which is desig-

nated by

xn,j
γ = xn

γ + i(n + 1 − 2j), j = 1, . . . , n

In
γ is the quantum number of γth n-string (note that n

and γ are indices). We denote the number of the n-string
by αn, thus n = 1, . . . , M ; γ = 1, . . . , αn and the string
configuration {α} satisfy

α1 + 2α2 + · · · + (M − 1)αM−1 + MαM = M, (4)

where M is the number of down spins. The quantum num-
ber of n-string In

γ is an integer (half-odd integer) if N−αn

is odd (even) and satisfy

|In
α | ≤

(
N − 1 −

M∑

m=1

tnmαm

)
/2, (5)

where tnm ≡ 2 min(n, m) − δnm. For a given set of {In
γ },

equation (2) can be solved numerically and the energy is
given by

E{In
γ } = −NJ/4 +

∑

n,γ

2Jn

(xn
γ )2 + n2

, (6)

which represents the energy of the lowest weight state in
the SU(2) irreducible space designated by S = N/2 −
M, Sz = S, S − 1, . . . ,−S. In the presence of an external
field h a Zeeman term is added to equation (6). Hence the
total energy of a given quantum number configuration is
given by

E = E{I(n)
γ } − hM , (7)

where M = 2Sz is the magnetization of the state.

3 Numerical Bethe ansatz

In statistical mechanics, the expectation value of a
Hermitian operator Q in thermal equilibrium is given by

〈Q〉 =
1
Z

∑

µ

Qµe−βEµ . (8)

where Z is known as the partition function, defined as

Z =
∑

µ

e−βEµ , (9)

β is inverse temperature, and
∑

µ represents the sum over
all possible eigenstates of the Hamiltonian. It turns out
that the variation of Z with respect to temperature or
any other external parameters affecting the system can
tell us virtually everything we might want to know about
the macroscopic behavior of the system. For example, the
internal energy is given by

U =
1
Z

∑

µ

Eµe−βEµ. (10)

From equation (9), it is easy to see that the internal energy
can also be written in terms of a derivative of the partition
function:

U = − 1
Z

∂Z

∂β
= −∂ ln Z

∂β
. (11)

The specific heat is given by the derivative of the internal
energy:

Cv =
∂U

∂T
= −kBβ2 ∂U

∂β
= −kBβ2 ∂2 ln Z

∂β2
. (12)
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where kB is the Boltzmann constant which is set to unity
hereafter.

Our aim is to combine the idea of statistical mechan-
ics mentioned above with the numerical solution of the
BA equations. The main idea of the numerical Bethe
ansatz method we introduce here is, first, to compute all
eigenvalues of a BA solvable model from its corresponding
BA equations. Then to compute the expectation value of
the Hermitian operators, representing the physical observ-
ables we are interested in, by averaging those operators
over all states of the system, weighting each state with its
own Boltzmann weight.

It has been shown [3] that the Hilbert space of the
isotropic Heisenberg model is complete under the string
classification. Here we want to show how to travel through
all CN

N/2 states in quantum number space and illustrate it
by considering a system of 6 sites.

For the case of M down spins, the first task is how to
obtain all string configurations fulfilling the restriction (4).
We adopt a time-like number “αM :αM−1: . . . :α2:α1”,
where the magnitude αn measures from 0 to [M/n] (here
[x] returns the truncated integer value of x), just like hours
and minutes in “HH:MM” measure from 0 to 23 and 0 to
59 respectively. If we increase the number “αM : . . . :α1” by
adding 1 to the first digit α1, step by step, we can travel
through all possible values. Among all these numerical val-
ues, only those whose digits satisfy the condition (4) are
what we need. Then all string configurations can be found
by this procedure. Of course, these operations are realized
in a computer. In order to make the method clear, let us
consider a problem of 6 sites.

M = 0: it is easy to have the state with all spins up,
i.e. M = 0, which has energy E = −JN/4.

M = 1: in this case, we only have one string config-
uration α1 = 1 and one quantum number −2 ≤ I1 ≤ 2,
thus there are 5 states. Each of them is represented by
one quantum number in the interval [−2, 2]. We can get
all possible quantum number configurations from the fol-
lowing figure,

−− ◦ −− ◦ − − • − − ◦ − − ◦ − −
where the dot is the occupied quantum number, and the
open circles represent other possible quantum numbers.
Then the BA equation is just

6 tan−1 x1
1 = πI1, (13)

which has a simple solution x1 = tan(πI1/6).
M = 2: here the string configuration is characterized

by {α1, α2}. We construct a number “α2:α1”, in which the
maximum value of α1 is 2 ([2/1] = 2), and α2 1 ([2/2] =
1). Increasing α1 step by step we generate all possible
configurations of the “α2:α1” number, ranging from 0:0 to
1:2. Among all the generated configurations, we are only
interested in those satisfying the condition α1 + 2α2 = 2.
The first case is α1 = 2, α2 = 0, in which the quantum
numbers satisfy −3/2 ≤ I1

1 , I1
2 ≤ 3/2, the second one is

α1 = 0, α2 = 1, in which the number satisfies −1 ≤ I2
1 ≤ 1.

They can be characterized by

−− ◦ −− • − − • − − ◦ −−

Table 1. All quantum number configurations for M = 2.

α1 = 2, α2 = 0 I1
1 –3/2 –3/2 –3/2 –1/2 –1/2 1/2

I1
2 –1/2 1/2 3/2 1/2 3/2 3/2

α1 = 0, α2 = 1 I2
1 –1 0 1 - - -

and

−−− ◦ −− ‡ − − ◦ − −−
respectively, where ‡ denotes the occupation for a quan-
tum number of 2-string. In Table 1, we list all quantum
number configurations for M = 2. The BA equations for
these two cases are

6 tan−1 x1
1 = πI1

1 + tan−1 x1
1 − x1

2

2
,

6 tan−1 x1
2 = πI1

2 + tan−1 x1
2 − x1

1

2
, (14)

and

6 tan−1(x2
1/2) = πI2

1 , (15)

respectively.
M = 3: in this case the string configuration is charac-

terized by {α1, α2, α3}. In the same way as we did above,
we construct a number “α3:α2:α1”, the maximum value
for each digit from left to right is 1, 1, 3 respectively.
Then we have 3 string configurations with the condition
α1 + 2α2 + 3α3 = 3, which correspond to the following
sequences

a : −−−− • −− • − − • − −−−

b : −−−− ◦ −− • − − ◦ − −−−
−−−−−−− ‡ − −−−−−−

c : −−−−−−−§ − −−−−−−
where a, b, c have 1, 3, 1 states respectively, § denotes the
site for 3-string. And in Table 2, we list all quantum num-
ber configurations for M = 3, whose BA equations are

6 tan−1 x1
1 = πI1

1 + tan−1(x1
1 − x1

2)
+ tan−1(x1

1 − x1
3),

6 tan−1 x1
2 = πI1

2 + tan−1(x1
2 − x1

1)
+ tan−1(x1

2 − x1
3),

6 tan−1 x1
3 = πI1

3 + tan−1(x1
3 − x1

1)
+ tan−1(x1

3 − x1
1). (16)

6 tan−1 x1
1 = πI1

1 + tan−1(x1
1 − x2

1)
+ tan−1((x1

1 − x2
1)/3),

6 tan−1 x2
1 = πI2

1 + tan−1(x2
1 − x1

1)
+ tan−1((x2

1 − x1
1)/3),

(17)
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Table 2. All quantum number configurations for M = 3.

α1 = 3, α2 = 0, α3 = 0 I1
1 –1 - -

I1
2 0 - -

I1
3 1 - -

α1 = 0, α2 = 0, α3 = 1 I1
1 –1 0 1

I2
1 0 0 0

α1 = 1, α2 = 1, α3 = 0 I3
1 0 - -

and

6 tan−1 x3
1 = πI3

1 . (18)

respectively.
As a result we have in total C6

3 = 20 distinct con-
figurations of a quantum number whose Hilbert space is
complete.

Then, we compute the eigenvalue for a given quantum
number configuration {In

γ } by solving the BA equations
numerically. For the Heisenberg chain, the BA equations
can be solved by iteration, for other models, such as the
Hubbard model, the BA equations can be solved by a
gradient method.

4 Monte Carlo Bethe ansatz

For a system of N sites, there are CN
N/2 quantum number

configurations. This number increases exponentially with
the size of the system, so it is impossible to calculate all
eigenvalues for a large system, such as N > 40, with exist-
ing computer capacity. This restriction can be overcome
by a Monte Carlo method. There are many Monte Carlo
methods available, and we introduce below a new method
that we call the Monte Carlo Bethe ansatz. This method
is a classical Monte Carlo strategy applied to a quantum
problem. The basic idea behind the MCBA method is to
simulate the random thermal fluctuation of the system
from state to state in the quantum number space of the
BA solution. This method is not limited by the sign prob-
lem that may show up in the usual quantum Monte Carlo
methods.

Since the energy eigenvalues are a function of both M
and of the quantum numbers In

γ we can follow a classical
Monte Carlo strategy, by sampling the configuration space
of M and {In

γ }. We now explain how to implement the
Monte Carlo calculation, which follows three steps. Let us
assume the present state is µ with a corresponding Mµ –
the number of down spins in state µ. From the state µ any
other state ν with Mν , within the number of CN

N/2−1, can
be obtained.

step one: first we choose Mν , knowing that the number
of states with Mν spins down is CN

Mν
− CN

Mν−1, thus the
probability of selecting Mν is (CN

Mν
− CN

Mν−1)/CN
N/2.

step two: having selected Mν , all possible string con-
figurations for the given Mν are determined from of equa-

tion (4) which satisfy [3]
∑

α1+···+MαM=M

D({αn}) = (CN
M − CN

M−1), (19)

where D({αn}) is the number of states, characterized by
the set of quantum numbers {In

α} associated with the
string configuration {αn}, and reads

D({αn}) =
M∏

i=1

C
N−∑M

j=1 tijαj

αj . (20)

So, in step two, we select a string configuration with the
probability D({αn})/(CN

M − CN
M−1).

step three: having determined the string configuration,
we then select at random a quantum number configura-
tion, which is the state ν we want, for the given string
configuration. From the partition function Z, the proba-
bility density for a state µ is

pµ = (N − 2Mµ + 1)e−βEµ, (21)

where the degenerancy of state µ was taken into account.
The detailed balance condition tells us the transition prob-
ability should satisfy

pν

pµ
=

(N − 2Mν + 1)
(N − 2Mµ + 1)

e−β(Eν−Eµ). (22)

Hence it is possible to use the Metropolis algorithm for the
acceptance ratio to accept or reject the state µ according
to

A(µ → ν) =

{
(N−2Mν+1)
(N−2Mµ+1)e

−β(Eν−Eµ), pν

pµ
< 1

1, otherwise.
(23)

The MCBA algorithm is complete and the three basic
steps are repeated a number of times. After an initial
equilibration time, the expectation values can be then es-
timated as an arithmetic mean over the repeated Markov
chain

〈Q〉 =
1
N

∑

{µ}
Q(µ). (24)

5 Specific heat and susceptibility

In order to check the validity of our approaches, we apply
these two methods to the study of the specific heat and
the magnetic susceptibility of the anti-ferromagnetic and
ferromagnetic Heisenberg models.

For the present model, however, because of the de-
generacy in each set of quantum number configurations,
equation (8) should be revised according to the property
of the operator. For example, the internal energy and mag-
netization are

〈E〉 =
1
Z

∑

µ

(N − 2Mµ + 1)Eµe−βEµ ,

〈M〉 =
1
Z

∑

µ

N/2−Mµ∑

Mz
µ=−N/2+Mµ

2Mz
µe−βEµ. (25)
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Fig. 1. The specific heat of a 24 site anti-ferromagnetic (left)
and ferromagnetic (right) XXX model and the same quantities
obtained by TBA (lines).
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Fig. 2. The susceptibility of a 24 site anti-ferromagnetic (left)
and ferromagnetic (right) XXX model (points) and the same
quantities obtained by TBA (lines).

where Z =
∑

µ(N −2Mµ +1)e−βEµ. From thermodynam-
ics it is easy to obtain the expression for the specific heat
and magnetic susceptibility per site

C =
β2

N
(〈E2〉 − 〈E〉2),

χ =
β

N
(〈M2〉 − 〈M〉2). (26)

We apply NBA to a 24-site system and MCBA to a
60-site system, respectively. The latter has C60

30 different
quantum number configurations, hence it is impossible to
calculate all the eigenvalues of the system.

In Figures 1 and 2, we show the specific heat and
the magnetic susceptibility, for a 24-site system, obtained
from NBA and compare our results with those obtained
from TBA. It is clear that the two results match. In Fig-
ure 3, we show the specific heat and the magnetic suscepti-
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Fig. 3. The specific heat and susceptibility for a 60 site chain,
computed with the MCBA method, is compared with the TBA
results (lines) both for the anti-ferromagnetic (circles) and fer-
romagnetic (squares) cases.

Table 3. Specific heat and susceptibility of ferromagnetic
XXX model obtained by a thermodynamic Bethe ansatz
(TBA), a numerical Bethe ansatz (NBA) solution of a 24 site
system, and a Bethe ansatz based Monte Carlo (MCBA) ap-
proach for a 60 site system.

T/J TBA NBA MCBA
Cv 0.5 0.129178 0.129197 0.1261 ± 0.0019

0.6 0.121671 0.121688 0.1220 ± 0.0012
0.7 0.112363 0.112379 0.1132 ± 0.0009
0.8 0.102496 0.102511 0.1019 ± 0.0003
0.9 0.092861 0.092875 0.0931 ± 0.0002
1.0 0.083875 0.083887 0.0840 ± 0.00017
1.5 0.051111 0.051117 0.05112 ± 0.00004
2.0 0.033256 0.033260 0.03326 ± 0.00002
2.5 0.023088 0.023090 0.02308 ± 0.00001
3.0 0.016876 0.016878 0.01687

χ 0.5 3.7378 3.742446 3.669 ± 0.027
0.6 2.90686 2.909917 2.8914 ± 0.0139
0.7 2.35856 2.360709 2.3458 ± 0.0039
0.8 1.97323 1.974817 1.9613 ± 0.0044
0.9 1.68953 1.690744 1.6902 ± 0.0028
1.0 1.473032 1.473986 1.47509 ± 0.00180
1.5 0.882613 0.882996 0.88316 ± 0.00016
2.0 0.622855 0.623056 0.62299 ± 0.00010
2.5 0.479082 0.479205 0.47908 ± 0.00007
3.0 0.388433 0.388516 0.38848 ± 0.00004

bility, for a 60-site system obtained from MCBA together
with the results from TBA. They both agree to each other
except at low temperature. In Table 3, we compare, for the
ferromagnetic case, the two methods we introduced here
with TBA, giving the explicit numerical values. It is clear
that our methods work very well for the present model.
Hence our conclusion is that for a small system, such as
N ≤ 38 due to the computer limitation, it is possible to
compute all eigenvalues and to obtain all possible thermo-
dynamic quantities of interest by using equation (8). For
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Fig. 4. The specific heat of the anti-ferromagnetic Heisenberg model for different values of the external field: (a) h =
0, 0.2, 0.3, . . . , 1.0; (b) h = 1.1, 1.2, . . . , 2.0; (c) specific heat as a function of h for different temperatures T = 0.1, 0.2, . . . , 4.0. In
panel (a) of fit to the law C =∝ T 1/2, for h = 1.0, is given at low temperatures.
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Fig. 5. The magnetic susceptibility of the anti-ferromagnetic Heisenberg model for different values of the external field:
(a) h = 0, 0.4, 0.5, . . . , 0.9; (b) h = 1.0, 1.2, . . . , 2.0; (c) magnetic susceptibility as a function of h for different temperatures
T = 0.1, 0.2, . . . , 4.0.

temperatures larger than the finite size energy gap our re-
sults agree with TBA results exactly. For larger systems,
however, results can still be obtained by using the MCBA
method. For the present model, it is interesting that the
result of the 24-site system already matches that obtained
from NBA for thermodynamic system. We interpret this
being due to the fact that the correlation functions in this
model are all power-law decay. Therefore, the local physi-
cal quantities, such as energy, are not effected remarkably
by those spins that are far away. So a small system can
well describe the thermal properties of an infinite system.

Now we study the thermodynamics of the model in
the presence of a magnetic field by NBA, which has also
been studied by Klümper [26]. In Figures 4 and 5, the re-
sults for the specific heat and the magnetic susceptibility
of the anti-ferromagnetic case are shown for various mag-
netic fields. It is clear from these two figures that there are
two different behaviors at low temperature, separated by
the saturation field hc = 1.0 in the ground state. In order
to understand better this behavior of the antiferromag-
netic case, let us use the mapping between the Heisenberg

model and the spinless fermion model. This mapping is
achieved by the Jordan-Wigner transformation [36], and
Hamiltonian (1) can be written as

H = −J

2

N∑

l=1

(f †
l fl+1 + f †

l+1fl)

+J

N∑

l=1

(
nl − 1

2

)(
nl+1 − 1

2

)
. (27)

where the spinless fermion operators f †
l , fl obey the usual

anti-commutation relation, nl is the usual local number
operator. When h < hc, the system is not fully polarized,
that is

∑N
l=1 nl > 0, hence we always have two Fermi

points ±kF in the ground state. The dispersion relation
of low-lying excitations is dominated by the linear-k de-
pendence, hence we still have the Fermi-liquid like spe-
cific heat: C ∝ T at low temperatures. If h ≥ hc, how-
ever, and from the point view of spinless fermions, we
have

∑N
l=1 nl = 0, and the dispersion relation becomes k2,
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Fig. 6. The specific heat (a) and the magnetic susceptibility (b) for the ferromagnetic Heisenberg model as a function of
temperature for different values of an external field h = 0.0, 0.1, 0.2, . . . , 2.0, obtained by NBA. (c). The susceptibility of
ferromagnetic Heisenberg model for h = 0.0, 0.1, 0.2, obtain by NBA and MCBA respectively.

because of the cos k dispersion-relation for the fermions in
the lattice. Hence, the specific heat manifests a T 1/2 be-
havior at sufficiently low temperature for h = hc, which
can be seen in Figure 4 (open circles). Moreover, the mag-
netic susceptibility presents a strong peak for h = hc,
when T → 0 [see Fig. 5, panel c]. This strong magnetic
response is associated with a change in the nature of the
elementary excitations when the line h = hc is crossed
at zero temperature. Indeed, at T = 0 and hc = 1.0,
the system manifests infinite susceptibility, as can be seen
from Figure 5, panel b. We attribute it due to the de-
generacy between the state of [N − 1, 1] and [N ], and a
small magnetic field can fully polarize the system. The
phase with h ≥ hc shares anti-ferromagnetic-like behavior
[Fig. 6, panel b], while for h < hc, the susceptibility shows
a logarithm singularity [26].

For the ferromagnetic case the specific heat and the
magnetic susceptibility are plotted in Figure 6, for differ-
ent values of the magnetic field. As is known, if h = 0
the ground state of the ferromagnetic case is highly de-
generate with S = N/2, Sz = −S,−S + 1, · · · , S and a
very small h can fully polarize the system. So it is easy
to understand why zero temperature susceptibility is in-
finite. After it is magnetized (in the presence of small h),
however, the susceptibility should be zero. This behavior
is seen in Figure 6, panel b. We also show, in Figure 6,
panel c, the susceptibility obtained by MCBA. Both the
results of the two methods agree with each other perfectly.

6 Pairwise entanglement at finite
temperatures

As an application, we apply our method to the pairwise
entanglement of two nearest neighbors at finite temper-
atures. Obviously, the Hamiltonian is invariant under a
global SU(2) rotation, which implies total spin conserva-
tion. Thus the reduced density matrix of any two spins of

the system takes the form

ρjl =

⎛

⎜⎝

u+ 0 0 0
0 w1 z 0
0 z∗ w2 0
0 0 0 u−

⎞

⎟⎠ , (28)

which is expressed in the conventional bases | ↑↑〉, | ↑↓〉,
| ↓↑〉, | ↓↓〉. The entities of the reduced density matrix (28)
can be calculated from the finite-temperature correlation
functions, Gαβ = 〈SαSβ〉, namely

u+ = u− =
1
4
(1 + 4Gzz),

z = Gxx + Gyy + iGxy − iGyx. (29)

For the present model, we also have Gxx = Gyy = Gzz

due to the global SU(2) symmetry. Since we just consider
the entanglement between the nearest neighbors, the cor-
relation function is simply

Gαα = − 1
3JN

〈E〉, (30)

where 〈E〉 is calculated from equation (25). Then, the
pairwise entanglement, in terms of the measurement of
concurrence [37], can be calculated as

C = 2 max
[
0, |z| −

√
u+u−

]
(31)

which is site-independent because of the translational in-
variance.

We show the concurrence between two nearest neigh-
bors as a function of temperature for a 30-site system in
Figure 7. From the figure we can see that the thermal fluc-
tuation usually suppresses the entanglement. Meanwhile,
in the high temperature limit, T → ∞, the Boltzmann
weight of each eigenstate becomes almost equal, this fact
leads to vanishing correlation functions. Therefore, the
concurrence is expected to become zero in the high tem-
perature region. So there exists a threshold point Tth at
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to compare with previous work [28], the threshold temperature
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which the concurrence becomes zero as the temperature
increases. The threshold temperature is quite important
since it tells us the range of temperature in which the
system has nonzero entanglement. As is well known, in
spin 1/2 systems, the nearest neighbor superexchange in-
teraction is estimated in the order of 1000 K. The above
result shows that the threshold temperature is also in the
same order of the interaction strength. Therefore the en-
tanglement of two nearest neighbors may always exist at
room temperature. In order to study the dependence of
the threshold temperature on the system’s size, we show
the behavior of the threshold temperature in Figure 8 for
the system-size up to 32. From the figure, we find Tth(N =
odd) < Tth(N = even) if N < 11 [28]. However, this rela-
tion is not longer true if N > 11, as we can see from the
figure. It becomes Tth(N = odd) > Tth(N = even).

7 Summary

In summary, we presented two numerical approaches to
the thermodynamics of Bethe ansatz solvable models. The
first one is the numerical Bethe ansatz which works very
well for a small system. We think it is possible to obtain

all eigenvalues of a system up to size L = 38, for the
Heisenberg model. For a relatively larger system, we also
find that the Monte Carlo simulation in quasi-momentum
space works well in the moderate and high temperature re-
gions. At low temperatures, the present selection method
is not excellent, and a better one is required. The discovery
of such a method is a challenging and interesting research
problem. As an application, we used NBA to study the
behavior of pairwise entanglement and the corresponding
threshold temperature in the antiferromagnetic Heisen-
berg model. We found that the finite-size-effect of the
threshold temperature shows a quite different behavior for
even- and odd-size systems.

There are many physical quantities of interest at finite
temperature which are still not well understood, such as
spin stiffness of the XXZ model that is important to un-
derstand the transport properties, because of the complex
form of the thermodynamic equations. Our methods pro-
vide a new route to compute all these quantities directly
from the Bethe ansatz equations.
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